Anisotropic Young Diagrams and Jack Symmetric Functions

نویسندگان

  • S. Kerov
  • S. KEROV
چکیده

Λ:λրΛ(cα(b) + u)(cα(b) + v)κα(λ,Λ)φ(Λ) = (nα + uv) φ(λ), where cα(b) is the α-content of a new box b = Λ \ λ. If α = 1, this identity implies the existence of an interesting family of positive definite central functions on the infinite symmetric group. The approach is based on the interpretation of a Young diagram as a pair of interlacing sequences, so that analytic techniques may be used to solve combinatorial problems. We show that when dealing with Jack polynomials Pλ(x;α), it makes sense to consider anisotropic Young diagrams made of rectangular boxes of size 1 × α.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Young Diagrams and Infinite-dimensional Diffusion Processes with the Jack Parameter

We construct a family of Markov processes with continuous sample trajectories on an infinite-dimensional space, the Thoma simplex. The family depends on three continuous parameters, one of which, the Jack parameter, is similar to the beta parameter in random matrix theory. The processes arise in a scaling limit transition from certain finite Markov chains, the so called up-down chains on the Yo...

متن کامل

Generalised discriminants, deformed quantum Calogero-Moser system and Jack polynomials

It is shown that the deformed Calogero-Moser-Sutherland (CMS) operators can be described as the restrictions on certain affine subvarieties of the usual CMS operators for infinite number of particles. The ideals of these varieties are shown to be generated by the Jack symmetric functions related to the Young diagrams with special geometry. Combinatorial formulas for the related super-Jack and s...

متن کامل

Correspondence between conformal field theory and Calogero - Sutherland model

We use the Jack symmetric functions as a basis of the Fock space, and study the action of the Virasoro generators Ln. We calculate explicitly the matrix elements of Ln with respect to the Jack-basis. A combinatorial procedure which produces these matrix elements is conjectured. As a limiting case of the formula, we obtain a Pieri-type formula which represents a product of a power sum and a Jack...

متن کامل

Jack polynomials and free cumulants

We study the coefficients in the expansion of Jack polynomials in terms of power sums. We express them as polynomials in the free cumulants of the transition measure of an anisotropic Young diagram. We conjecture that such polynomials have nonnegative integer coefficients. This extends recent results about normalized characters of the symmetric group. 2000 Mathematics Subject Classification: 05...

متن کامل

The Boundary of Young Graph with Jack Edge Multiplicities

Consider the lattice of all Young diagrams ordered by inclusion, and denote by Y its Hasse graph. Using the Pieri formula for Jack symmetric polynomials, we endow the edges of the graph Y with formal multiplicities depending on a real parameter θ. The multiplicities determine a potential theory on the graph Y. Our main result identifies the corresponding Martin boundary with an infinite-dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008